1,974 research outputs found

    Critical Care Ultrasonography and Its Application for COVID-19

    Get PDF
    Ultrasound has developed as an invaluable tool in diagnosis and proper management in the intensive care unit (ICU). Application of critical care ultrasonography is quite distinct from the routine comprehensive diagnostic ultrasound exam, because the urgent setting mandates a goal-directed approach. Performing accurate and efficient critical care ultrasound requires ultrasound providers to first understand the pathophysiology of the disease and related imaging findings, and then follow the protocols to perform a focused ultrasound exam. In the ongoing coronavirus disease 2019 (COVID-19) pandemic, ultrasound plays an essential role in diagnosing and monitoring critically ill COVID-19 patients in the ICU. Our review focuses on the basics and clinical application of critical care ultrasound in diagnosing common lung disease, COVID-19 pulmonary lesions, pediatric COVID-19, and cardiovascular dysfunction as well as its role in ECMO and interventional ultrasonography

    Resveratrol, by Modulating RNA Processing Factor Levels, Can Influence the Alternative Splicing of Pre-mRNAs

    Get PDF
    Alternative pre-mRNA splicing defects can contribute to, or result from, various diseases, including cancer. Aberrant mRNAs, splicing factors and other RNA processing factors have therefore become targets for new therapeutic interventions. Here we report that the natural polyphenol resveratrol can modulate alternative splicing in a target-specific manner. We transfected minigenes of several alternatively spliceable primary mRNAs into HEK293 cells in the presence or absence of 1, 5, 20 and 50 µM resveratrol and measured exon levels by semi-quantitative PCR after separation by agarose gel electrophoresis. We found that 20 µg/ml and 50 µg/ml of resveratrol affected exon inclusion of SRp20 and SMN2 pre-mRNAs, but not CD44v5 or tau pre-mRNAs. By Western blotting and immunofluorescence we showed that this effect may be due to the ability of resveratrol to change the protein level but not the localization of several RNA processing factors. The processing factors that increased significantly were ASF/SF2, hnRNPA1 and HuR, but resveratrol did not change the levels of RBM4, PTBP1 and U2AF35. By means of siRNA-mediated knockdown we depleted cells of SIRT1, regarded as a major target of resveratrol, and showed that the effect on splicing was not dependent on SIRT1. Our results suggest that resveratrol might be an attractive small molecule to treat diseases in which aberrant splicing has been implicated, and justify more extensive research on the effects of resveratrol on the splicing machinery

    Human antibodies targeting cell surface antigens overexpressed by the hormone refractory metastatic prostate cancer cells: ICAM-1 is a tumor antigen that mediates prostate cancer cell invasion

    Get PDF
    Transition from hormone-sensitive to hormone-refractory metastatic tumor types poses a major challenge for prostate cancer treatment. Tumor antigens that are differentially expressed during this transition are likely to play important roles in imparting prostate cancer cells with the ability to grow in a hormone-deprived environment and to metastasize to distal sites such as the bone and thus, are likely targets for therapeutic intervention. To identify those molecules and particularly cell surface antigens that accompany this transition, we studied the changes in cell surface antigenic profiles between a hormone-sensitive prostate cancer line LNCaP and its hormone-refractory derivative C4-2B, using an antibody library-based affinity proteomic approach. We selected a naïve phage antibody display library to identify human single-chain antibodies that bind specifically to C4-2B but not LNCaP. Using mass spectrometry, we identified one of the antibody-targeted antigens as the ICAM-1/CD54/human rhinovirus receptor. Recombinant IgG1 derived from this single-chain antibody binds to a neutralizing epitope of ICAM-1 and blocks C4-2B cell invasion through extracellular matrix in vitro. ICAM-1 is thus differentially expressed during the transition of the hormone-sensitive prostate cancer cell line LNCaP to its hormone-refractory derivative C4-2B, plays an important role in imparting the C4-2B line with the ability to invade, and may therefore be a target for therapeutic intervention

    A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean

    Get PDF
    Giant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial (COI and 16S) and nuclear (ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species

    Rhinosinusitis derived Staphylococcal enterotoxin B possibly associates with pathogenesis of ulcerative colitis

    Get PDF
    BACKGROUND: During clinical practice, we noticed that some patients with both ulcerative colitis (UC) and chronic rhinosinusitis (CRS) showed amelioration of UC after treatment of CRS. This study was designed to identify a possible association between CRS and UC. METHODS: Thirty-two patients with both CRS and UC received treatment with functional endoscopic sinus surgery (FESS) for CRS. Clinical symptom scores for CRS and UC, as well as serum levels of anti-Staphylococcal enterotoxin B (SEB) were evaluated at week 0 and week 12. Sinus wash fluid SEB content was measured with enzyme-linked immunosorbent assay (ELISA). The surgically removed tissues were cultured to identify growth of Staphylococcus. aureus (S. aureus). Immunohistochemistry was employed to identify anti-SEB positive cells in the colonic mucosa. Colonic biopsies were obtained and incubated with SEB. Mast cell activation in the colonic mucosa in response to incubation with SEB was observed with electron microscopy and immunoassay. RESULTS: The clinical symptom scores of CRS and UC severe scores (UCSS) were significantly reduced in the UC-CRS patients after FESS. The number of cultured S. aureus colonies from the surgically removed sinus mucosa significantly correlated with the decrease in UCSS. High levels of SEB were detected in the sinus wash fluids of the patients with UC-CRS. Histamine and tryptase release was significantly higher in the culture supernate in the patients with UC-CRS than the patients with UC-only and normal controls. Anti-SEB positive cells were located in the colonic mucosa. CONCLUSION: The pathogenesis of UC in some patients may be associated with their pre-existing CRS by a mechanism of swallowing sinusitis-derived SEB. We speculate that SEB initiates inappropriate immune reactions and inflammation in the colonic mucosa that further progresses to UC

    Spatiotemporal DNA methylome dynamics of the developing mouse fetus

    Get PDF
    Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders

    Sh3pxd2b Mice Are a Model for Craniofacial Dysmorphology and Otitis Media

    Get PDF
    Craniofacial defects that occur through gene mutation during development increase vulnerability to eustachian tube dysfunction. These defects can lead to an increased incidence of otitis media. We examined the effects of a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) on the progression of otitis media and hearing impairment at various developmental stages. We found that all mice that had the Sh3pxd2bnee mutation went on to develop craniofacial dysmorphologies and subsequently otitis media, by as early as 11 days of age. We found noteworthy changes in cilia and goblet cells of the middle ear mucosa in Sh3pxd2bnee mutant mice using scanning electronic microscopy. By measuring craniofacial dimensions, we determined for the first time in an animal model that this mouse has altered eustachian tube morphology consistent with a more horizontal position of the eustachian tube. All mutants were found to have hearing impairment. Expression of TNF-α and TLR2, which correlates with inflammation in otitis media, was up-regulated in the ears of mutant mice when examined by immunohistochemistry and semi-quantitative RT-PCR. The mouse model with a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) mirrors craniofacial dysmorphology and otitis media in humans

    Discovery of Potential piRNAs from Next Generation Sequences of the Sexually Mature Porcine Testes

    Get PDF
    Piwi- interacting RNAs (piRNAs), a new class of small RNAs discovered from mammalian testes, are involved in transcriptional silencing of retrotransposons and other genetic elements in germ line cells. In order to identify a full transcriptome set of piRNAs expressed in the sexually mature porcine testes, small RNA fractions were extracted and were subjected to a Solexa deep sequencing. We cloned 6,913,561 clean reads of Sus Scrofa small RNAs (18–30 nt) and performed functional characterization. Sus Scrofa small RNAs showed a bimodal length distribution with two peaks at 21 nt and 29 nt. Then from 938,328 deep-sequenced small RNAs (26–30 nt), 375,195 piRNAs were identified by a k-mer scheme and 326 piRNAs were identified by homology searches. All piRNAs predicted by the k-mer scheme were then mapped to swine genome by Short Oligonucleotide Analysis Package (SOAP), and 81.61% of all uniquely mapping piRNAs (197,673) were located to 1124 defined genomic regions (5.85 Mb). Within these regions, 536 and 501 piRNA clusters generally distributed across only minus or plus genomic strand, 48 piRNA clusters distributed on two strands but in a divergent manner, and 39 piRNA clusters distributed on two strands in an overlapping manner. Furthermore, expression pattern of 7 piRNAs identified by homology searches showed 5 piRNAs displayed a ubiquitous expression pattern, although 2 piRNAs were specifically expressed in the testes. Overall, our results provide new information of porcine piRNAs and their specific expression pattern in porcine testes suggests that piRNAs have a role in regulating spermatogenesis
    corecore